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a b s t r a c t 

Without the limitations of labelled distorted images for training, the unsupervised blind colour image 

quality assessment (UBCIQA) model shows excellent generalization performance. However, existing UB- 

CIQA methods fail to consider the correlation between different colour channels. This paper proposes an 

efficient UQBCIA algorithm. Placing R, G, and B channels of a colour image into the three imaginary parts 

of a quaternion, the proposed UQBCIA obtains the quaternion representation of a colour image, which al- 

lows UQBCIA to process the colour image as a whole while keeping its three colour channels dependent. 

The naturalness, structural and texture statistic features are then extracted to fit a multivariate Gaus- 

sian (MVG) model. The quality of the test colour image is calculated as the MVG distance between the 

fitted pristine images and the test image. The proposed method is evaluated from three aspects: (1) pre- 

diction accuracy, (2) computational complexity and (3) robustness on five colour databases. The results 

demonstrate that the proposed UQBCIA algorithm outperforms state-of-the-art unsupervised and classical 

supervised BIQA methods. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

As photography becomes a fashionable way to record our daily

ife and express our emotions, the number of colour images has

een exploding in recent years. Since the colour image is expected

o obtain maximum visual qualities in imaging, it is important to

uantitatively estimate the distortion level of a colour image. Un-

er these conditions, the objective image quality assessment (IQA)

lgorithms, which assess the degradation of a distorted image by

stablishing mathematical models to simulate subjective opinion

cores, have attracted much attention in the past decades [1] . 

There are three types of objective IQA models depending on

he reference level of clear image. Full-reference IQA needs all

nformation of the reference image, and calculates the similarity

etween the reference image and distorted image in pixel-wise

2] . To reduce the dependence on the reference image, reduced-

eference IQA extracts some effective features from the image us-

ng some image representation methods (e.g., perceptual hashing

ethod [3] ), and calculates the feature distance between the ref-

rence and distorted images for quality evaluation [4,5] . Unfortu-
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ately, the reference image is usually inaccessible in most scenes.

n this paper, we focus on the no-reference (NR) field, which is

lso called blind IQA (BIQA). Early BIQA models mainly concen-

rated on distortion-specific methods, which are designed for spe-

ific types of distortion [6,7] . However, in most applications, the

istortion types are varied and inaccessible in advance. Therefore,

istortion-specific methods have limited applications. 

In recent years, many studies have examined general-purpose

R-IQA to assess the wild range of distortion types. According to

hether subject scores are required in the construction process

f model, general-purpose IQA algorithms can be classified into

upervised and unsupervised methods. Supervised methods can

e further classified into classical machine learning-based meth-

ds [8–14] and deep learning-based methods [15–17] . For classical

achine learning-based methods, after some hand-crafted quality-

ware features are extracted, regression models are built by us-

ng machine learning methods to map the extracted features to

ubjective quality scores. For deep learning-based methods, the

eatures are extracted by deep learning algorithms automatically.

he trained model behaves well when fully trained. However, the

rained model will have limited performance when the test im-

ge is distorted by untrained distortions (i.e., the distortion types

re not included in training). Therefore, these supervised meth-

ds have weak generalization capability and the trained model

https://doi.org/10.1016/j.sigpro.2020.107708
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is difficult to extend to other IQA fields in practical application.

Considering that high quality natural images have strong “natural-

ness” and are easy to obtain, unsupervised methods [18–22] have

been proposed by extracting some natural scene statistics fea-

tures from pristine images to learn a multivariate Gaussian (MVG)

model that serves as the “clear” image. For a test image, the qual-

ity score is calculated as the distance between the learned MVG

model and the MVG model calculated from the test image. Unsu-

pervised methods do not need large numbers of labelled distorted

images for training, and therefore show a better generalization per-

formance than supervised methods [21,22] . Although unsupervised

methods are more applicable in practice, they have not yet been

adequately studied. In this paper, we further investigate the unsu-

pervised model and propose an unsupervised method for BIQA. 

The colour information in an image is widely used in our daily

life, as our human eyes can readily identify a colour object [23] .

How to process the colour information in an image is a basic yet

important task. According to scientific studies, colour information

accounts for 80% of the initial sighting by the human eye, and 50%

of the perceived colour information will still remain after 2 min

[24] . Furthermore, most of the existing images are colour images.

Therefore, incorporating the colour information into IQA modelling

is essential. Basically, there are three strategies used for colour pro-

cessing in IQA. The first strategy is converting the colour image

into greyscale and extracting features on it [8–13,18–20,22] , such

as Blind Image Quality Index (BIQI) [8] , Blind Image Spatial QUality

Evaluator (BRISQUE) [12] , Natural Image Quality Evaluator (NIQE)

[20] , and Structure Naturalness and Perception NIQE (SNP-NIQE)

[22] . This strategy, however, will cause colour information loss. The

model will be less effective if the image is affected by colour dis-

tortion types. 

The second strategy is to extract features separately on each

channel of the colour image, and then combine them for more

comprehensive modelling. In Integrated Local NIQE (IL-NIQE) [21] ,

Lin et al. calculated the gradient maps from the R, G and B chan-

nels, separately. This strategy was also adopted by Wu et al. in

the distortion Type Classification Label Transfer (TCLT) [14] model.

They extracted discrete cosine transform, wavelet and spatial fea-

tures from the R, G, B channels of a colour image, respectively.

Experiments have shown that this approach can boost the perfor-

mance of an algorithm, but the computational complexity also in-

creases greatly. Furthermore, the correlations of the colour chan-

nels are ignored [25] . 

Because a colour image has three channels and a quaternion

has three imaginary components, the strategy is proposed by en-

coding the RGB channels into the three imaginary parts of the

quaternion. With quaternion representation (QR), the colour im-

age can be processed as a whole while keeping its three colour

channels dependent. Through extracting features on the quaternion

matrix, the correlations between different colour channels can be

well preserved without increasing the computational complexity

[26] . Such strategy is broadly used in colour image processing. Ex-

amples include colour image classification [27] , colour face image

recognition [28] , colour image denoising [29] , etc.. Some studies

have also been done on colour image quality evaluation field using

QR. In [30] , Wang et al. represented the colour image in quater-

nion, and followed a singular value decomposition. The quality of

the test image was measured as the angle between the singular

value feature vectors derived from the reference image and test

image. In [31] , Chen et al. established hybrid phase congruency for

IQA through quaternion Gabor wavelets. In [32] , as an extension of

Structural SIMilarity (SSIM) [2] , Kolaman et al. measured the struc-

tural similarity between a reference image and the distorted image

in quaternion domain, and referred to this method as Q-SSIM. 

Existing QR-based IQA models are all full-reference methods.

Considering the excellent merit of QR in processing colour images,
e establish an unsupervised quaternion blind colour image qual-

ty assessment (UQBCIA) model via QR in this paper. The colour

mage is initially represented as a quaternion. Then, quality-aware

eatures, including naturalness statistical features, structure statis-

ical features and texture statistical features are extracted to es-

ablish a MVG model. Finally, the quality of a distorted image is

alculated by measuring the MVG variations between the fitted of

istorted image and the fitted of pristine natural images. As the

xtension work of NIQE, IL-NIE and SNP-NIQE, the proposed model

s named as Q-NIQE. 

In summary, this paper offers the following contributions: 

1. Existing BIQA methods, whether converting the colour image

into greyscale, or extracting features on each channel of the

colour image, are far from an ideal colour image processing

method. To solve this problem, this paper represents the colour

image as a pure quaternion, and extracts some statistical fea-

tures for IQA modelling. To the best of our knowledge, existing

QR-based IQA methods are FR. We are the first to process the

colour image with QR in the NR field. 

2. Based on the features extracted from the quaternion, we pro-

pose a UQBCIA model. The proposed method can process colour

image effectively without greatly increasing computational cost.

The experiments demonstrate that our model has a higher pre-

diction accuracy than state-of-the-art unsupervised BIQA meth-

ods and classical supervised BIQA methods. Specially, the pro-

posed model has a much higher prediction accuracy for real

and multiple distortions, which indicates that our model is

more efficient in application. 

. Quaternion algebra 

The quaternion algebra extends the one imaginary part in com-

lex algebra to three parts [33] , and the mathematical representa-

ion is: 

¨
 = q 0 + q 1 i + q 2 j + q 3 k q 0 , q 1 , q 2 , q 3 ∈ R (1)

wo points on a variable denote the variable is a quaternion. i, j ,

nd k are the fundamental quaternion units and subject to the fol-

owing rules: 

 

2 = j 2 = i jk = −1 , i j = − ji = k (2)

he quaternion can also be represented as Q̈ = (q 0 , q 1 , q 2 , q 3 ) =
 S( ̈Q ) , V ( ̈Q )] with the scalar part S( ̈Q ) = q 0 , and the vector part

 ( ̈Q ) = { q 1 , q 2 , q 3 } . The conjugate of Q̈ is defined as: 

¨
 

∗ = q 0 − q 1 i − q 2 j − q 3 k (3)

he norm of the quaternion can be obtained via: 

 ̈Q | = 

√ 

Q̈ · Q̈ 

∗ = 

√ 

q 2 
0 

+ q 2 
1 

+ q 2 
2 

+ q 2 
3 

(4)

he multiplication between a scalar γ and a quaternion is com-

uted as: 

Q̈ = γ q 0 + γ q 1 i + γ q 2 j + γ q 3 k (5)

or two quaternions Ẍ = x 0 + x 1 i + x 2 j + x 3 k and Ÿ = y 0 + y 1 i +
 2 j + y 3 k, the multiplication between them is defined as: 

¨
 ̈Y = (x 0 + x 1 i + x 2 j + x 3 k )(y 0 + y 1 i + y 2 j + y 3 k ) 

= (x 0 y 0 − x 1 y 1 − x 2 y 2 − x 3 y 3 ) 
+ (x 0 y 1 + x 1 y 0 + x 2 y 3 − x 3 y 2 ) i 
+ (x 0 y 2 − x 1 y 3 + x 2 y 0 + x 3 y 1 ) j 
+ (x 0 y 3 + x 1 y 2 − x 2 y 0 + x 3 y 1 ) k 

(6)

efine ‘ •’ as the dot product operator and ‘ �’ as the cross product

perator. Then, the equation above can be rewritten as: 

S( ̈X ̈Y ) = S( ̈X ) S( ̈Y ) − V ( ̈X ) • V ( ̈Y ) 

V ( ̈X ̈Y ) = S( ̈X ) V ( ̈Y ) + S( ̈Y ) V ( ̈X ) + V ( ̈X ) � V ( ̈Y ) 
(7)
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Fig. 1. The framework of the proposed method. 
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Fig. 2. Simple pristine images selected for learning the pristine MVG model. The 

first, second, third, and last rows are the people, architectures, animals and natural 

landscapes images, respectively. 
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or two pure quaternions, i.e., S( ̈X ) = S( ̈Y ) = 0 , the multiplication

etween them can be computed as: 

S( ̈X ̈Y ) = −V ( ̈X ) • V ( ̈Y ) 

V ( ̈X ̈Y ) = V ( ̈X ) � V ( ̈Y ) 
(8) 

he multiplication of two pure quaternions is not the dot prod-

ct of them. Therefore, feature extraction in the quaternion domain

oes not simply combine the features extracted from each channel

f an RGB colour image. This conclusion is proven in Q-SSIM. For

ore information, please refer to [32] . 

. The proposed unsupervised BIQA method 

The framework of the proposed method is first presented in this

ection. Then, as the core of this method, the feature extraction

rocess is presented. Finally, a validation is conducted to investi-

ate the effectiveness of the extracted features. 

.1. Framework of the proposed method 

The framework of the proposed method is illustrated in Fig. 1 .

irst, to capture the local degradation of an image, the image is

ecomposed into a set of non-overlapped patches. The patch size

s fixed as 72 in our model. Then, some quality-aware features, in-

luding the naturalness statistical features, structural statistical fea-

ures and texture statistical features are extracted on each patch

fter QR, and fitted into a MVG model as: 

( f ; u, �) = 

1 

(2 π) l/ 2 | �| 1 / 2 exp 

(
−1 

2 

( f − u ) 
T 
�−1 ( f − u ) 

)
(9) 

here μ, � are two fitting parameters. Denote μr , �r and μd , �d 

re the MVG parameters fitting from pristine patches and the test

atches, respectively. Last, the quality of the test image patches are

alculated as the distance between the MVG model derived from

ristine patches and the MVG model derived from test patches: 

 = 

√ 

( μd − μr ) 
T 

(
�d + �r 

2 

)−1 

( μd − μr ) (10) 

he final quality score of the test images is expressed as the mean

alue of quality scores on each patch. 
To train the “clear” image against all distorted images, we select

08 pristine images from Berkeley image segmentation database

34] . The pristine images can be separated into 4 categories: peo-

le, architectures, animals and natural landscapes. Fig. 2 illustrates

ome sample images that used in training. To illustrate the depen-

ence from the pristine images of our model, we also trained our

odel using the pristine images from NIQE and IL-NIQE, and the

esults are shown in Section 4 . Additionally, to better learn the

haracteristics of pristine images, only the patches containing high-

ontrast are selected for learning. In implementation, we calculate

he contrast of each pixel using Eq. (14) , and the mean value is

sed to denote the contrast level of the patch. Only the contrast

evel of the patch exceeding the threshold we set is used for learn-

ng the MVG model. The threshold is fixed as 80% of the maximum

ontrast level in our model. To reduce the dimension of the ex-

racted features, PCA is applied before learning the MVG model,

nd the parameters are fixed as IL-NIQE [21] . 
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Fig. 3. The feature maps and their distributions. (a) is an image from TID2013 database. the second row are the feature maps of (a) with (b) QMSCN map, (c) Adjacent 

QMSCN map, (d) QG x map, (e) QG y map, (f) QGabor map. The last row are the distributions of the second row in order. 
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3.2. Quaternion naturalness statistical modelling 

Naturalness is confirmed to be an important property for a nat-

ural image, and is usually characterized by modelling the locally

mean subtracted and contrast normalized (MSCN) coefficients and

the products of pairs of adjacent MSCN coefficients [20–22,35] . In

this paper, the MSCN and adjacent MSCN are derived from the

quaternion domain. A colour image I , can be represented in pure

quaternion as [36] : 

Ï = Ri + G j + Bk (11)

where R, G and B are the three channels of I . The MSCN coefficients

in quaternion domain are calculated as: 

QMSCN(x, y ) = 

| ̈I (x, y ) | − | ̈u (x, y ) | 
σ ( x, y ) + 1 

(12)

where x and y are spatial coordinates. | · | denotes the norm op-

eration. μ̈ and σ denote the local mean and standard deviation

respectively, which can be calculated as: 

μ̈(x, y ) = 

M ∑ 

m = −M 

N ∑ 

n = −N 

ẅ m,n ̈I (x + m, y + n ) (13)

σ (x, y ) = 

√ 

M ∑ 

m = −M 

N ∑ 

n = −N 

ẅ m,n (| ̈I (x + m, y + n ) | − | ̈μ(x, y ) | ) 2 (14)

where ẅ denotes a quaternion Gaussian window in unit-volume. 

To visually show the distribution of the QMSCN coefficients,

Fig. 3 (a) shows an image from TID2013 database [37] , and Fig. 3 (b)

is the QMSCN map. (g) is the distribution of (b). It can be seen that
he distribution of the QMSCN coefficients followed a GGD with a

ero-mean [38] , which is defined as: 

f GGD (x ;α, β) = 

α

2 β�( 1 /α) 
exp 

(
−
(

x 

β

)α)
(15)

here �( ·) is the gamma function as follows: 

(x ) = 

∫ ∞ 

0 

t x −1 e −t dt, x > 0 (16)

he obtained distribution parameters α and β are incorporated as

he quality-aware features. 

The products of pairs of adjacent QMSCN coefficients along 0 ◦,

5 ◦, 90 ◦, 135 ◦ are also naturalness indicators, which can be ob-

ained through [12] : 

h (x, y ) = QMSCN (x, y ) QMSCN (x, y + 1) 
d 1 (x, y ) = QMSCN (x, y ) QMSCN (x + 1 , y + 1) 
v (x, y ) = QMSCN (x, y ) QMSCN (x + 1 , y ) 
d 2 (x, y ) = QMSCN (x, y ) QMSCN (x + 1 , y − 1) 

(17)

ig. 3 (c) and (h) illustrates the adjacent QMSCN map in the h ori-

ntation and its distributions of it. This distribution can be well

odelled by an asymmetric GGD (AGGD) in zero mode [39] : 

f AGGD (x ;γ , βl , βr ) = 

⎧ ⎨ 

⎩ 

γ

( βl + βr ) �( 1 γ ) 
exp 

(
−
(−x 

βl 

)γ
)

x ≤ 0 

γ

( βl + βr ) �( 1 γ ) 
exp 

(
−
(

x 
βr 

)γ
)

x > 0 

(18)

here the mean of the distribution is: 

= ( βr − βl ) 
�
(

2 
γ

)
�
(

1 
γ

) (19)
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Fig. 4. (a) and (g) are the high quality images. (b)–(f) are the five levels AGN-distorted images, and (h)–(l) are the five levels GB-distorted images. 
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he distribution parameters ( γ , β l , βr , η) are also incorporated

s quality-aware features. Note that the same conclusion can

lso be obtained for other orientations. Each orientation can ob-

ain the four distribution parameters. Overall, totally 18 features

re obtained from the QMSCN and adjacent QMSCN maps. The

xtracted features on naturalness are summarized as f QMSCN =
 α, β, (γ , βl , βr , η) ×4 } . 

.3. Quaternion structure statistics modelling 

The image structure is proven to be an effective feature in IQA

odelling [21,22] . In this paper, we employed the image gradient

n quaternion domain to describe the local contrast and structure.

he horizontal ḧ x and vertical ḧ y quaternion gradient operators are

efined as: 

 ̈x = 

1 

6 

[ 

ü ü 0 ü 

∗

ü ü 0 ü 

∗

ü ü 0 ü 

∗

] 

ḧ y = 

1 

6 

[ 

ü ü ü 

ü 0 ü 0 ü 0 

ü 

∗ ü 

∗ ü 

∗

] 

(20) 

here ü = 

1 √ 

3 
(i + j + k ) is a unit pure quaternion, ü ∗ = 

1 √ 

3 
(−i −

j − k ) is the conjugate of ü , and ü 0 = 0 . Then, the gradients on the

orizontal QG x and vertical QG y are computed as: 

G x = 

√ 

( ̈I � ḧ x ) · ( ̈I � ḧ x ) ∗

G y = 

√ 

( ̈I � ḧ y ) · ( ̈I � ḧ y ) ∗
(21) 

here “�” denotes the convolution operation. Fig. 3 (d) and (e) il-

ustrates the QG x and QG y maps of Fig. 1 (a), and Fig. 1 (i) and (j)

hows the distributions of QG x and QG y , respectively. The gradient

ap can be fitted with the Weibull distribution as: 

f (x ;λ, k ) = 

{ 

k 
λ

(
x 
λ

)k −1 
exp 

(
−
(−x 

λ

)k 
)

x ≥ 0 

0 x < 0 

(22)

he distribution descriptors λ and k are chosen as structural indi-

ators. The four extracted quality-aware features of the structure

re summarized as f QGM 

= { (λ, k ) ×2 } 

.4. Quaternion texture statistics modelling 

Since the human eye perceives an image in multiple scales and

ultiple orientations [40] , incorporating the multi-orientation fea-

ures into IQA modelling is necessary. Log-Gabor is an effective

ulti-scale and multi-orientation image texture analysis tool and

as been widely used in image identification [41] , classification

42] and quality evaluation [43] . In this paper, Log-Gabor filters in

he quaternion domain are employed to extract texture statistics
eatures. The 2D Log-Gabor filter in the quaternion domain can be

efined as: 

G̈F ( f, θ ) = ü · e 
− [ ln ( f/ f u )] 2 

2[(lnσ f / f u )] 2 e 
− (θ−θv ) 2 

2 σ2 
θ (23)

here f t , t = 0 , . . . , T − 1 is the center frequency and θv =
 π/V, v = 0 , 1 , . . . , V − 1 is the orientation angle. We can obtain a

et of Log-Gabor filters response with different center frequency

nd orientation angle. In this paper, we chose T = 3, V = 4. Therefore,

e can obtain totally 12 quaternion Log-Gabor filter responses,

nd were denoted as ¨QGR { t, v } with t = 1 , 2 , 3 and v = 1 , 2 , 3 , 4 . The

agnitude of the response are computed as: 

Gabor{ t, v } = 

√ 

¨QGR { t, v } · ¨QGR { t, v } ∗ (24)

ig. 3 (f) illustrates the quaternion Log-Gabor response of Fig. 3 (a)

ith t = 0 , v = 0 . Fig. 3 (k) shows the distributions. The response

an be well modelled by Weibull distribution. The distribution de-

criptors λ and k are chosen as the quality-aware features. The

ame conclusions can be obtained from other responses. Therefore,

 totally of 24 features are obtained and summarized as f QGB =
 (λ, k ) ×12 } . 

In summary, 18, 4 and 24 features are extracted on Naturalness,

tructure and Texture, respectively. Furthermore, considering that

he viewing distance and image resolution greatly influence the

valuated quality score, a multi-scale strategy is adopted to extract

he features on the initial and the down-sampled scales [20–22] .

herefore, for an image, a total of (18 + 4 + 24) × 2 = 92 features

re extracted for quality evaluation, which can be expressed as: 

f = { f QMSCN , f QGM 

, f QGB } ×2 (25)

.5. Validation for extracted features 

To validate the effectiveness of the quality-aware features in

apturing the image degradation, we calculate the feature values

ith respect to different distortion levels. The first and second

ows in Fig. 4 illustrate a reference and five distorted level im-

ges with the distortion types are Addictive Gaussian Noise (AGN)

the first row in Fig. 4 ) and Gaussian blur (GB) (the second row

n Fig. 4 ) from the TID2013 database [37] . Fig. 5 shows the val-

es of quality-aware features changing along the distortion levels.

ote that the feature can be viewed as an effective feature if the

alues monotonously change with the distortion level. In Fig. 5 , it

an be seen that the estimated feature scores basically changed

long with the distortion levels, which indicates that the quality-

ware features can effectively distinguish the distortion level of the

mage. 
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Fig. 5. The first and second rows are the quality-aware feature values changed along the AGN-distorted and GB-distorted images in Fig. 4 , respectively. 
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4. The evaluation of the proposed method 

The proposed Q-NIQE and competing models are evaluated in

this section. First, the experimental protocols are reported. Then,

the proposed Q-NIQE with competing methods are evaluated from

three aspects: (1) prediction accuracy, (2) computational cost, and

(3) robustness. 

4.1. Experimental protocols 

Eleven representative NR approaches containing six supervised

and five unsupervised are compared to our model. The supervised

methods include six mainstream NR methods: BIQI [8] , DIIVINE

[10] , BRISQUE [12] , BLINDS-II [11] , NFERM [13] , and multi-task end-

to-end optimized deep neural network (MEON) [17] . The unsuper-

vised methods include five classical methods: QAC [18] , LPSI [19] ,

NIQE [20] , IL-NIQE [21] and SNP-NIQE [22] . 

Four commonly used indicators Spearman rank order correla-

tion coefficient (SRCC), Kendalls rank correlation coefficient (KRCC),

Pearson linear correlation coefficient (PLCC) and root mean square

error (RMSE) are employed to quantify the prediction perfor-

mances of the competing BIQA methods. Higher SRCC, KRCC and

PLCC values and lower RMSE values indicate better IQA met-

rics. Before calculating the PLCC and RMSE, the object scores are

mapped to subject scores via nonlinear regression [44] , which can

be implemented by a five-parameter logistic function: 

q (x ) = χ1 

(
1 

2 

− 1 

1 + exp ( χ2 · ( x − χ3 ) ) 

)
+ χ4 · x + χ5 (26)

where x and q ( x ) are the objective score and the mapped score,

and χ1,...,5 are the five parameters to be fitted. 

In the experiments, five colour databases are used for evalu-

ation. Among them, LIVE [45] , CSIQ [46] , TID2013 [37] and IVC

[47] databases are man-made databases. The distorted images are

obtained by introducing distortions onto high-quality photographs.

We selected the most common distortion types for evaluation as in

[13,22] . LIVE In the Wild Image Quality Challenge Database (LIVE

challenge) [48] is a real-world database that contains uncommon

and multiple distortions. We employed it to test the generaliza-

tion capability of the BIQA models. The detailed information of the

databases is shown in Table 1 . 

To obtain the overall performance on the test databases, the

weighted-average is adopted, which uses the number of images in

each database as the weighting function to weight the measure in-

dex. The weighted-average is denoted as “AVG”. 
.2. Prediction accuracy 

Table 2 lists the prediction accuracy results of the Q-NIQE and

nsupervised methods on the five databases. For each measure in-

ex, the best and second results are highlighted in red and blue,

espectively. ‘—’ indicates that the data are inaccessible. It can

e seen from Table 2 that Q-NIQE performance is consistent well

cross all databases. In particular, Q-NIQE achieves the best results

n LIVE challenge databases, which reveals that Q-NIQE has good

eneralization capability for multiple and real distortions. Overall,

-NIQE achieves the best results on each measure index compared

ith existing state-of-the-art unsupervised methods. 

Then, Q-NIQE is compared with supervised methods. Consid-

ring that the supervised methods need opinion scores for train-

ng before implementation, we train them on one dataset, and test

hem on other datasets. Note that the training step is not needed

or Q-NIQE. To fully test the generalization capability performance

f a supervised IQA model, the supervised IQA models are trained

n LIVE and TID2013 databases, respectively. The number of im-

ges in LIVE database is larger than that in TID2013 database.

he tested results are illustrated in Tables 3 and 4 . For the sake

f fairness, we optimized the parameters of all competing mod-

ls in training. When the supervised methods are trained on LIVE

atabase, it can be found that MEON model achieves the best re-

ults on CSIQ and TID2013 databases, NFERM model achieves the

est results on IVC database, and the proposed model Q-NIQE

chieves the best results on LIVE challenge database. However,

hen the supervised methods are trained on TID2013 database,

he proposed Q-NIQE method achieves the best results among

ll databases. The performance of supervised methods decreases

ignificantly compared with those trained on LIVE database. This

s mainly caused by the decrease in the number of training im-

ges. The performance of the supervised methods heavily relies on

he numbers of training images. Therefore, to obtain high predic-

ion accuracy, the supervised method requires a larger number of

mages for training. However, obtaining a subjective quality score

s rather time-consuming and costly. In contrast, the unsupervised

ethod does not require labelled images for training, and there-

ore has a stable and robust application result. Specially, whether

rained on LIVE or on TID2013 databases, Q-NIQE exhibits much

etter performance in LIVE challenge database than all supervised

ethods, which indicates that Q-NIQE has better generalization ca-

ability in application. 

For visualization, Fig. 6 shows the scatter plots of subjective

OS/DMOS values versus objective values obtained from QAC,

IQE, IL-NIQE, SNP-NIQE and the proposed Q-NIQE on LIVE, CSIQ,

ID2013 and LIVE challenge databases. For a more comprehen-

ive analysis, different distortion types are marked with distinct
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Table 1 

Main information about tested image quality databases. 

Database LIVE CSIQ TID2013 IVC LIVE challenge 

Number of reference images 29 30 25 10 None 

Number of distorted images 779 600 500 120 1162 

Distortion types FF, GB, WN GB, AWGN AGN, GB JPEG, GB Multiple distortions 

JP2K, JPEG JP2K, JPEG JPEG, JP2K JP2K 

Number of observers 161 35 917 15 8100 

Size of images 480 × 720, etc. 512 × 512 512 × 384 512 × 512 500 × 500 

Table 2 

Evaluation results compared with unsupervised methods. 

Table 3 

Evaluation results compared with supervised methods when trained on LIVE. 
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Table 4 

Evaluation results compared with supervised methods when trained on TID2013. 

Fig. 6. Scatter plots of subjective scores against objective scores calculated by QAC, NIQE, IL-NIQE, Q-NIQE model on LIVE (first row), CSIQ (second row), TID2013 (third row) 

and LIVE challenge (last row) databases. Different types of distortions are marked by distinct colours. 
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Table 5 

Performance and time-costing of features and their com- 

binations in. 

Features f QMSCN f QMSCN f QMSCN 

+ f QGM + f QGM + f QGB 

SRCC 0.7114 0.9027 0.9113 

Running times 1.7284 2.5826 5.4721 
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Table 7 

The prediction accuracy of the R-NIQE, G-NIQE, B-NIQE, RGB-NIQE, and Q-NIQE 

models. 

Database Index R-NIQE G-NIQE B-NIQE RGB-NIQE Q-NIQE 

LIVE SRCC 0.8745 0.8766 0.8787 0.8529 0.9113 

KRCC 0.6814 0.6832 0.6859 0.6554 0.7323 

PLCC 0.8792 0.8802 0.8836 0.8619 0.9077 

CSIQ SRCC 0.9141 0.9162 0.9104 0.8418 0.9046 

KRCC 0.7437 0.7480 0.7397 0.6471 0.7216 

PLCC 0.9227 0.9276 0.9397 0.8726 0.9126 

TID2013 SRCC 0.8432 0.8436 0.8355 0.8046 0.8586 

KRCC 0.6485 0.6498 0.6408 0.6067 0.6562 

PLCC 0.8704 0.8736 0.8611 0.8277 0.8578 

IVC SRCC 0.8385 0.8496 0.8554 0.6940 0.8596 

KRCC 0.6408 0.6563 0.6605 0.5009 0.6717 

PLCC 0.8170 0.8401 0.8384 0.7031 0.8576 

LIVE 

challenge 

SRCC 0.4788 0.4934 0.4795 0.4809 0.5203 

KRCC 0.3263 0.3369 0.3263 0.3335 0.3594 

PLCC 0.5236 0.5401 0.5308 0.5211 0.5619 

AVG SRCC 0.7302 0.7370 0.7303 0.7004 0.7560 

KRCC 0.5559 0.5619 0.5558 0.5219 0.5789 

PLCC 0.7530 0.7616 0.7593 0.7272 0.7723 

Table 8 

The computational cost of Q-NIQE, R-NIQE, G-NIQE, B-NIQE, and 

RGB-NIQE models. 

Method Running times 

R-NIQE 3.4090 

G-NIQE 3.4144 

B-NIQE 3.4263 

RGB-NIQE 9.5411 

Q-NIQE 5.4723 

Q  

N  

p  

t  

a

4

 

t  

p  

f  

t  

p  

F  

a  

a  

fi  

I  

g  

u

 

p  

a  

I  

r  

d  
olours. Note that for a good IQA metric, the points should be

lustered along the fitted line for distinct types of distortions. In

ig. 6 , it can be seen that the scatter points of the Q-NIQE are

lustered together for distinct types of distortions and show better

onsistency with MOS/DMOS than other methods. For instance,

or Q-NIQE, the points on LIVE database are clustered well along

he fitted line, and an obvious tendency is observed that the

MOS increases with the increase of the Q-NIQE assessed values.

evertheless, for other testing IQA metrics, the points are relatively

ecentralized compared to Q-NIQE. 

To examine the effectiveness of each type of feature, additional

xperiments are conducted using features and their combinations

n. QMSCN is set as the basic feature, and the other features are

dded in turn. The performance (SRCC and time-costing are used)

n each image is illustrated in Table 5 . The prediction accuracy is

ontinuously improved with the added features, which indicates

hat the features utilized in Q-NIQE are significant. 

.3. Computational complexity 

The computational cost of each BIQA model is measured in

erms of the time cost on each image. Each BIQA model is tested

n the whole LIVE database ten times and the average value is cal-

ulated as the measure index. These experiments are performed on

 Dell workstation with a 3.2 GHz Intel Core i 7 TM processor and a

6 GB RAM. The software platform is Matlab R2010b. The results

f average time costing on each image are listed in Table 6 . Gen-

rally, compared with the models with similar prediction accuracy

e.g., IL-NIQE, SNP-NIQE, NFERM), Q-NIQE has the modest compu-

ational complexity. 

.4. Quaternion representation validation 

To test the effectiveness of the quaternion representation, the

erformances of the proposed quaternion-based model Q-NIQE and

he single channel (i.e., R, G, B channels) based models as well as

he channels combined model are reported. We name the trained

odel on the R, G, and B channels as R-NIQE, G-NIQE, and B-

IQE, respectively. For example, R-NIQE denotes the features are

xtracted on the R channel. We also extract the features on the R,

, and B channels. The extracted features are then concatenated

o modelling. The established model is referred as RGB-NIQE. The

rediction accuracy results are shown in Table 7 . For each index,

he model achieved the best results is highlighted in boldface. Q-

IQE achieves the best performance almost on each database ex-

ept CSIQ database. Overall, Q-NIQE achieves the best results on

ach measure index. 

In addition, the computational cost of R-NIQE, G-NIQE, B-NIQE,

GB-NIQE, and Q-NIQE models is measured in terms of the time

ost on each image. The results are shown in Table 8 . The proposed
Table 6 

Computational cost of the tested models on LIVE database. 

Metrics BIQI DIIVINE BLINDS-II BRISQUE NFERM

Running times 0.14 22.12 83.59 0.51 57.17 
-NIQE model shows higher computational cost compared with R-

IQE, G-NIQE, and B-NIQE models, while shows much lower com-

utational cost than RGB-NIQE. From Tables 7 and 8 , it can be seen

hat using quaternion representation, better performance can be

chieved without great time cost increasing. 

.5. Robustness test 

We evaluate the robustness of the proposed IQA method from

wo aspects: (1) the sensitivity to the parameters and (2) the de-

endence on the pristine training images. SRCC is used as the per-

ormance index. First, we test the sensitivity to the parameters of

he proposed method. Two parameters are involved, including the

atch size s and the threshold Th when learning the MVG model.

ig. 7 illustrates the SRCC on the four databases under various s

nd Th . In Fig. 7 (a), Th is fixed as 0.78 (the value set in IL-NIQE)

nd s ranges from 48 to 96 with an interval of 8. In Fig. 7 (b), s is

xed as 64 and Th ranges from 0.6 to 0.9 with an interval of 0.05.

t can be seen that the the performance of Q-NIQE is consistently

ood on the four databases under a wide range of parameter val-

es. 

Then, cross validation is used to test the dependence on the

ristine training images. We train the NIQE model, IL-NIQE model

nd the proposed Q-NIQE model under the NIQE pristine images,

L-NIQE pristine images and the pristine images used in this paper,

espectively. Table 9 illustrates the results of SRCC value on LIVE

atabase. The performance of Q-NIQE is consistently good com-
 MEON QAC NIQE IL-NIQE SNP-NIQE Q-NIQE 

0.098 0.42 0.38 9.56 4.83 5.47 
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Fig. 7. Robustness test of the proposed method in terms of the sensitivity to pa- 

rameters (a) patch size s , (b) threshold Th . 

Table 9 

Cross validation for robustness test. 

Pristine images NIQE IL-NIQE Q-NIQE 

NIQE 0.9062 0.9002 0.8942 

IL-NIQE 0.9015 0.8971 0.8500 

Q-NIQE 0.9145 0.9062 0.9113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pared with that of NIQE and IL-NIQE, which indicates that the pro-

posed model has better robustness than NIQE and IL-NIQE. 

Conclusion 

Processing colour information properly and incorporating it into

IQA modelling is a vital and meaningful task as we lived in a

colourful world. However, existing methods, whether converting

a colour image into greyscale methods, or extracting features on

each channel of the colour image methods, cannot reflect the cor-

relation between different colour channels. This paper proposes

an efficient unsupervised methods based on quaternion represen-

tation. By encoding the three channels of an RGB colour image

into the three imaginary parts of a quaternion, the colour im-

age can be processed as a whole and can effectively reflect the

correlation between different colour channels. Naturalness statis-

tic features, structure statistic features and texture statistic fea-

tures are extracted in the quaternion domain to establish a MVG

model. The quality of a distorted image is calculated by measur-

ing the MVG variations between fitted for distorted image and fit-

ted for pristine natural images. The performance evaluated on LIVE,

TID2013, CSIQ, IVC and LIVE challenge databases demonstrates the

high efficiency in capturing the image degradation of Q-NIQE. In

the future, we intend to propose an efficient unsupervised BIQA

method since existing methods usually have high computational

complexity. 
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